42crmo钢板42crmo耐磨板免费询价
更新时间:2025-01-04 09:52:54 浏览次数:15 公司名称: 众鑫42crmo冷轧耐磨锰钢板圆钢金属材料有限公司
材质 | 42crmo钢板 |
---|---|
规格 | 2200*9600 |
加工方式 | 激光切割 |
地址 | 山东 |
运输方式 | 专线物流 |
本试验在一定切削条件下对42CrMo钢板进行干切削,研究刀具累计加工1 035 s过程中前后刀面的磨损形貌。试验结果表明:累计加工时间T从0增加到1 035 s的过程中,刀具前刀面参与切削的区域亮度增加,磨损区域增大;当加工时间T为1 035 s时,刀具前刀面磨损明显,出现颜色较深面磨损区域、亮度较高的部分刀具涂层材料磨损区域、磨粒磨损明显的磨损区域。加工时间T从0增加到435 s的过程中,刀具后刀面出现明显的磨损带,涂层材料磨损带逐渐增大。加工时间T从435 s增加到1 035 s的过程中,磨损带缓慢增大,出现基体磨损现象,随着磨损时间延长,基体磨损逐渐增大。当加工时间T从48 s增加到1 035 s,已加工表面粗糙度Ra由3.46μm逐渐增大到3.91μm。
针对模铸锻材42crmo钢板表面出现裂纹缺陷,通过对锻材表面裂纹进行试验分析,结果表明,裂纹表面有平面等轴晶粒的多边形轮廓形态,具有锻造开裂后又发生高温再结晶的形貌特征,进而推断出锻材上的裂纹形成于高温锻造变形过程中。
在42CrMo钢常规处理的基础上增加了冷处理,研究浅冷处理和深冷处理对42CrMo钢硬度和耐磨性的影响。结果表明,经浅冷处理和深冷处理后,42CrMo钢板中残留奥氏体向马氏体发生转变,且碳化物析出增多,致使钢的硬度和耐磨性均有,且深冷处理后硬度和耐磨性幅度高于浅冷处理。
为研究42Cr Mo钢板的冲击动态力学性能及本构模型,进行了冲击动态压缩实验和金相观察.材料表现出强烈的应变率依赖性,同时还得到不同应变率下力学性能差异的主要原因在于冲击动态载荷下的绝热剪切行为.采用热理论,42crmog分别考虑热应力和非热应力来解释变形机理,得到了应变率效应的描述.基于此,本文提出含高应变率效应的动态本构模型,通过绝热剪切准则来确定失稳的起始点,并与模型进行耦合.该模型能很好地描述42Cr Mo钢的准静态和冲击动态力学行为,特别是应变硬化效应和应变率效应.
42CrMo钢板含有Cr、Mo等多种合金化元素,具有优良的综合力学性能,既具有较高的强度,又具有较好的塑性,在锻件,特别是大型锻件领域,有广泛的应用。本文采用计算机模拟与实验相结合的方法,构建了 42CrMo钢较准确的本构模型和材料性能数据库,并开展了材料变形和热处理淬火过程的计算机模拟和实验,模拟结果与实验结果吻合较好。
通过热压缩实验,测定了 42CrMo钢板在不同温度和应变速率下的应力-应变数据,构建了改进的Johnson-Cook本构模型和应变补偿的Arrhenius本构模型,得到了较大应变范围内较准确的42CrMo钢的本构方程。拟合了手册中标准的42CrMo钢的TTT曲线,获得了较准确的TTT曲线数据。此外还构建了包含热导率、比热容、杨氏模量、泊松比、相变潜热、膨胀系数等较完善、准确的42CrMo钢数据库。以构建的数据库为基础,通过DEFORM软件模拟了 42CrMo钢在变形温度为1123 K、应变速率为0.01 s-1条件下的热压缩过程,将模拟结果中压缩后试样的尺寸数据、Top Die载荷-行程曲线以及计算得出的应力-应变曲线分别与相同实验条件下实测结果进行对比。结果显示,载荷-行程曲线和应力-应变曲线在数值大小和变化趋势上与实验结果吻合较好,表明选用的应变补偿的Arrhenius本构模型能够比较准确地描述42crmo钢板的变形行为。
通过DEFORM软件模拟了 42CrMo钢板在1123 K时的末端淬火过程,结果显示试样末端与水的换热程度剧烈,温度迅速下降,形成大量马氏体组织,随着远离淬火末端,马氏体含量逐渐降低,硬度也随之降低。同时进行了同条件的末端淬火实验,对淬火后试样的轴向硬度分布进行了测量,并观察不同位置组织组成,实验结果与模拟结果基本一致,这表明文中构建的42CrMo钢数值模拟数据库较为准确。可以在此基础上进行不同几何形状、不同变形条件、不同热处理过程的数值模拟,为实际生产过程的模拟与优化打下了良好的基础。
针对淬火油污染严重、生产不因素等问题,介绍一种新型水基淬火介质,及替代传统油淬的工艺。利用光学显镜、洛氏硬度计、 试验机和冲击试验机等手段对不同规格的42CrMo钢板在无机高分子水基淬火液中淬火再高温回火后的组织及性能进行了研究,并分析了用无机高分子水溶性淬火介质替代淬火油的可能性。结果表明,42CrMo钢在淬火后的硬度值为55~56 HRC;回火后的硬度值为285 HBW;显组织主要为粒状索氏体。其抗拉强度、屈服强度、伸长率、断面收缩率等力学性能均达到大型合金钢锻件的JB/T6396技术条件要求。因此,改进后的热处理工艺可以更好地应用于42CrMo钢板的淬火,显著提高了偏航齿圈综合热处理质量。
42CrMo钢板作为现代社会使用广泛的材料之一,往往在服役环境中容易遭受腐蚀和磨损等破坏,使得其使用寿命大大降低。气体渗氮(gas nitriding)是一种能够显著钢铁材料表面耐腐蚀性能和耐磨损性能的技术。但是其效率往往很低,也导致了其生产成本的增加。因此,越来越多的研究集中到了气体渗氮效率上。铁酸镧是一种稀土钙钛矿氧化物,在催化领域的应用前景也非常有潜力。本论文以42CrMo钢为基体,在基体表面通过溶胶凝胶法预制备一层铁酸镧薄膜,这也是 次将铁酸镧引入到气体渗氮中。并且研究了不同薄膜厚度、渗氮温度以及不同混合气体比例等参数的改变对渗层组织、结构及性能的影响。
通过光学显镜(OM)和扫描电镜(SEM)观察样品表面和横截面结构和形貌;通过X射线衍射仪(XRD)和能谱仪(EDS)表征渗氮层物相和化学成分组成;通过显硬度计表征渗氮层显力学性能和有效硬化层厚度;利用削盘式摩擦磨损仪和电化学工作站分别表征样品耐磨损性能和耐腐蚀性能;后续利用超景深显镜观察样品摩擦磨损和电化学腐蚀形貌;通过X射线光谱(XPS)和透射电镜(TEM)研究样品表面化学和成键状态及区形貌,讨论了铁酸镧在气体渗氮过程中催渗机理。42crmo钢板结果表明,在样品表面预制备一层铁酸镧薄膜后,可以有效地促进化合物层和有效硬化层增厚。雾化沉积铁酸镧薄膜样品在550℃下气体渗氮4h后,具有厚的化合物层和有效硬化层,厚度分别为15.29μm和305.8μm;此外,表面氮含量增加也使得表面硬度有了显著,表面硬度 值为910.5HV0